RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. FIRST SEMESTER (July – December), 2011 Mid-Semester Examination, September, 2011

Date : 15/09/2011 Time : 11 am – 12 noon

MATHEMATICS (General)

Paper : I

Full Marks : 50

[1+2]

(Use separate answer scripts for each group)

Group - A

- Answer <u>any three</u> questions : [3×3 = 9]
 a) Find the general value of iⁱ. [3]
 b) State De Moivre's theorem. Using De Moivre's theorem express cos 3θ in terms of powers of cos θ
 - c) If n is a positive integer and α,β are roots of $x^2 2x + 2 = 0$ then using De Moivre's theorem show

that
$$\alpha^n + \beta^n = 2^{2^{n+1}} \cos \frac{n\pi}{4}$$
. [3]

d) Find the value of
$$\sqrt{-3} + \sqrt{-3} + \sqrt{-3} + \dots$$
 and also find Log i. [2+1]

e) If
$$Z_r = \cos\frac{\pi}{3^r} + i\sin\frac{\pi}{3^r}$$
 (r = 1, 2, ...) then prove that $Z_1 Z_2 Z_3 \infty = i$ [3]

<u>Group – B</u>

2. Answer **any two** questions :

where θ is real.

- a) Define Cartesian product of two sets. If $A = \{1, 2, 3\}, B = \{2, 4, 6\}$ then find $A \times B$. Find also P(A), the power set of A. [1+1+2]
- b) Prove that the composition of two injective maps is injective. Verify injectivity and surjectivity of $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = K^2 + 1 \forall n \in \mathbb{R}$ [2+2]
- c) Define the eigen-value of a square matrix. Find the eigen-values of A = $\begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & -1 \\ 3 & 2 & -2 \end{pmatrix}$ [1+3]

<u>Group – C</u>

Answer **<u>any two</u>** questions :

3. a) Define the continuity of a function. Discuss the continuity of the function

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

at x = 0

Give an example of a discontinuous function.

- b) A function which is finitely derivable at a point is continuous at that point. Is the converse true? Give reason.
- c) If f(x+y) = f(x)f(y) for all real values of x, y; $f(x) \neq 0$ for any real value of x and f'(0) = 2, Prove that f'(x) = 2f(x). [4]

 $[2 \times 4 = 8]$

[1+2+1]

[27

 $[2 \times 4 = 8]$